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Abstract Surfactants reduce the interfacial tension, amend the solid–liquid contact
angle and greatly influence the capillarity action in unsaturated porous media. Solu-
bility studies of surfactants in inducing similar flow through such medium has been
described to be of great importance to hydrologists, agriculturists and for the people
related with water sciences to confine the flow problems in water infiltration sys-
tem, seepage delinquent and the underground disposal of wastewater. Present article
reviews the current state of knowledge to understand such one dimensional, unsteady
surfactant flow phenomenon due to the capillary pressure gradients and is represented
mathematically using one parameter group theory of similarity analysis. For the sake
of definiteness in the analysis, we assumed certain specific relationships viz. the per-
meability of the medium as a specific linear function of moisture content and time
which are consistent with the physical problem. We have not included any graphical
or numerical illustrations due to our particular interest in deriving the classical solution
to our problem.

Keywords Surfactant · Surface tension · Porous media · Unsaturated flow ·
Analytical solution · One parameter group theory

1 Introduction

Organic compounds, either aliphatic or aromatic, water soluble or insoluble can act
and referred as surface active agent (Surfactant) when found enough capable to form a

Analytical methodology in terms of confluent hypergeometric functions of the non-linear partial
differential equation governing one dimensional surfactant induced unsaturated flow through porous
media.
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uniform condensed film at their equilibrium spreading [1–5]. Such self-association and
well-defined orientation at the air/water interface with sharp polarity gradient directs
the novel ability of the surfactants to undergo an efficient close packing resulting into
an effective lowering of surface tension by several times [6–8]. It is commonly known
that the surface tension of most of the organic compounds is lower than pure water.
Such behavior could be attributed due to the relative aqueous-phase flow concentration
and to the degree of hydrophobicity [3,9–11]. However the magnitude of its effect is
also predicted to be system-specific and depends on the degree of retention variation
between the surfactant-free and surfactant-contaminated regions, the characteristics
of the porous medium and the wetting–drying history of the investigated system. As
surfactant-induced reduction in surface tension is directly proportional to capillary
pressure; consequently it prompts the capillary pressure gradients which could be
sufficient to cause the unsaturated flow perturbations [11]. All these factors count
on the surfactant type and concentration. Due to such unique surface active nature
and solution conduct these systems have been hired for various commercial industrial
applications, in engineered microfluidic systems and subsurface remedial schemes
[12,13].

Different mathematical viewpoints, approaches, variable techniques and approx-
imate solutions are putforth for better understanding on such unsaturated aqueous
flow [14–17]. Granting such one dimensional unsaturated flow through porous media
induced by the capillary pressure gradient caused by solute (surfactant) concentra-
tion; we presented in particular the state of knowledge on water-wetted porous media
[18,19] and have attempted to derive mathematically an analytical solution under
certain assumptions and obtain its pure classical solution. Here the partial non-linear
differential equation associated with a flow is transformed into an ordinary differential
equation using one parameter group theory of similarity analysis. The scope of the
paper is limited to the experimental data for the physico-chemical characterization of
surfactants in aqueous medium as our primary interest aimed in deriving the classical
solution to our problem.

2 Mathematical formulation of the problem

Considering, the motion of surfactant solution flow through unsaturated porous media
is governed by the continuity equation, we have

∂(ρs .u)

∂t
= ∇.M (1)

where ρs is the bulk density of medium on dry weight basis, u is the moisture content
at any depth z on a dry weight basis and M is the mass flux of moisture [19].

From Darcy’s law for the motion of water in a porous medium, we have

V = −k∇∅ (2)

where V is the volume flux of moisture, k is the coefficient of aqueous conductivity
and ∇∅ is the gradient of the whole moisture potential.
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Combining equations (1) and (2), we get

∂(ρs .u)

∂t
= ∇(ρk∇∅), where ρ is the flux density (3)

Since the flow takes place only in vertical direction, Eq. (3) reduces to

ρs
∂u

∂t
= ∂

∂z

(
ρk

∂Ψ

∂z

)
+ ∂

∂z
(ρkg) (4)

where Ψ is pressure (capillary) potential, g is the gravitational constant and ∅ =
Ψ − gz. The positive direction of z-axis is the same as that of the gravity.

Considering u and Ψ to be connected by a single valued function, Eq. (4) can be
written as

∴ ∂u

∂t
= ∂

∂z

{
D

∂u

∂z

}
+ ρg

ρs

∂k

∂z
,

where D = ρk

ρs

∂Ψ

∂u
which is called the di f f usivi t y coe f f icient (5)

It is assumed that the diffusivity coefficient D is equivalent to the average value
Da over the whole range of the moisture content, the permeability k of the medium
is considered to vary directly with the moisture content u and inversely as the square
root of time t . So therefore the Eq. (5) becomes

∂u

∂t
= Da

∂2u

∂2z
+ ρg

ρs

k0√
t

∂u

∂z
, where k = k0√

t
u; (k0 = 0.232) (6)

For definiteness of the physical problem, we consider the downward and vertical
water flow will obey the following boundary conditions:

u(0, t) = u0; u(L , t) = uL( where uL �= 1) and
ρg

ρs

k0√
t

= u

L
(7)

3 Analytical solution

This section discusses the solution of the above boundary value problem (6) which is
transformed into ordinary differential equation by using similarity variable.

Using the dimensionless variables, Z = z
L and T = t

L2 in (6), we have the following
solution to the boundary value problem for the mentioned flow as

∂u

∂T
= Da

∂2u

∂ Z2 + u
∂u

∂ Z
(8)
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Let the solution of the problem (8) be given by

u(Z , T ) = G(Z , T ).H(T )

i.e. u = G H (9)

Now
∂u

∂T
= H

∂G

∂T
+ G

∂ H

∂T
; ∂u

∂ Z
= ∂

∂ Z
(G H) = H

∂G

∂ Z

∂2u

∂ Z2 = ∂

∂ Z

(
H

∂G

∂ Z

)
= H

∂2G

∂ Z2

Thus differential equation (8) takes the form

H
∂G

∂T
+ G

∂ H

∂T
= Da H

∂2G

∂ Z2 + G H2 ∂G

∂ Z
(10)

Hence, the boundary conditions are transformed into:

u0 = (0, T ) H(T ) and uL = G (L , T ) H (T ) (11)

3.1 One parameter group transformations

The procedure is initiated with the following group G, a class of transformations of
one-parameter ‘a’ of the form:

{
G : Z̄ = C

Z (a) Z + K Z (a), H̄ = C
H (a) H + K H (a)

T̄ = C
T (a) T + K T (a), Ḡ = C

G (a) G + K G(a)
(12)

where C
′s and K ′s are real-valued differentiable functions in the real parameter ‘a’.

From Eq. (12), we have

∂ Z̄

∂ Z
= C

Z (a) ; ∂ T̄

∂T
= C

T (a) ; ∂ H̄

∂ H
= C

H (a) ; ∂Ḡ

∂G
= C

G (a)

Now,

∂Ḡ

∂ T̄
= ∂Ḡ

∂G
· ∂G

∂ T̄
= ∂Ḡ

∂G

∂G

∂T

∂T

∂ T̄
= CG (a)

CT (a)

∂G

∂T
,

∂ H̄

∂ T̄
= ∂ H̄

∂ H
· ∂ H

∂ T̄
= ∂ H̄

∂ H

∂ H

∂T

∂T

∂ T̄
= CH (a)

CT (a)

∂ H

∂T
and

∂Ḡ

∂ Z̄
= ∂Ḡ

∂G
· ∂G

∂ Z̄
= ∂Ḡ

∂G

∂G

∂ Z

∂ Z

∂ Z̄
= CG (a)

CZ (a)

∂G

∂ Z

∂2Ḡ

∂ Z̄2
= ∂

∂ Z̄
(
∂Ḡ

∂ Z̄
) = ∂

∂ Z̄

(
C

G (a)
∂G

∂ Z

1

CZ (a)

)
= CG (a)

CZ (a)
· ∂

∂ Z

(
∂G

∂ Z

)
∂ Z

∂ Z̄
= CG (a)

[CZ (a)]2

∂2G

∂ Z2

(13)
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Equation (10) is said to be invariantly transformed for some function M(a), when-
ever

H̄
∂Ḡ

∂ T̄
+ Ḡ

∂ H̄

∂ T̄
− H̄ Da

∂2Ḡ

∂ Z̄2
− Ḡ(H̄)2 ∂Ḡ

∂ Z̄
= M(a)

[
H

∂G

∂T
+ G

∂ H

∂T

−H Da
∂2G

∂ Z2 − G H2 ∂G

∂ Z

]
(14)

Substituting Eq. (13) in (14) and on further solving, we get

[
C

H
C

G

CT

]
H

∂G

∂T
+

[
C

H
C

G

CT

]
G

∂ H

∂T
−

[
C

H
C

G

(CZ )2

]
Da H

∂2G

∂ Z2 −
[(

C
H

C
G
)2

CZ

]

G H2 ∂G

∂ Z
+ R(a) = M(a)

[
H

∂G

∂T
+ G

∂ H

∂T
− Da H

∂2G

∂ Z2 − G H2 ∂G

∂ Z

]
(15)

where R(a) = K H CG

CT
∂G
∂T + K H CH

CT
∂ H
∂T − K H CG

(CZ )2 Da
∂2G
∂ Z2 −

(
CG

)2

CZ G2
C

H H K H ∂G
∂ Z −(

CG
)2

CZ G(K H )2 ∂G
∂ Z − K G(CH H)2 CG

CZ
∂G
∂ Z − 2C

H H K G K H CG

CZ
∂G
∂ Z − K G(K H )2 CG

CZ
∂G
∂ Z

The invariance of (15) implies R(a) = 0 which is satisfied by putting K H = K G =0

Hence, we get CH CG

CT = CH CG

(CZ )2 = (CH CG )2

CZ = M(a) which yields

C
T = (CZ )2,

1

CZ
= C

G
C

H (16)

Moreover, boundary conditions of Eq. (7) are also invariant in form, implying that

ū(0, T̄ ) = u0 and ū(L , T̄ ) = uL

Now,

Z̄ = C
Z (a) Z + K Z (a)

whenever Z = 0 then Z̄ = C
Z (a) · 0 + K Z (a) = K Z (a)

But we require Z̄ = 0 which is possible if K Z (a) = 0

∴ K Z = 0 (17)

Now,

T̄ = C
T (a) T + K T (a)

whenever T = 0 then T̄ = C
T (a) · 0 + K T (a) = K T (a)
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But we require T̄ = 0 and this is possible if K T (a) = 0

∴ K T = 0 (18)

Finally, we get the one-parameter group G which transforms invariantly differential
equation (15) as well as boundary conditions (17) and (18)

Thus, the group G (12) is of the form

{
G : Z̄ = C

Z Z , H̄ = H
T̄ = (CZ )2T, Ḡ = G

(12a)

Thus aiming to use the group theory method to represent the problem in the form
of an ordinary differential equation, we precede our analysis to obtain a complete set
of absolute invariants.

If η = η(Z , T ) is the absolute invariant of the independent variables, then

g j (Z , T ; G, H) = Fj [η(Z , T )] where j = 1, 2 (19)

are two absolute invariants corresponding to G and H .
From (17), η(Z , T ) is an absolute invariant if it satisfies

α1 Z
∂η

∂ Z
+ α2T

∂η

∂T
= η (20)

The characteristics equations are

d Z

α1 Z
= dT

α2T
= η

1

α1
logZ = 1

α2
logT (on integrating)

Z = T
α1
α2

∴ η(Z , T ) = Z

T β
, where β = α1

α2
> 0, is the solution (21)

By similarity analysis the absolute invariants of the dependent variables u and q are

H(T ) = q(T )Ψ (η) (22)

Since q(T ) and H(T ) are independent of Z , while η is a function of Z and T , then
Ψ (η) = 1

∴ H(T ) = q(T ) (23)

The second absolute invariant is

G(Z , T ) = F(η) (24)

Here η = Z
T β and H(T ) = q(T )
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3.2 Reduction into an ordinary differential equation

Substituting (22), (23) and (24) into Eq. (10), we have

∴ F ′′(η) + (T β Fq + T β−1)F ′(η) − 1

q
T 2βq ′F = 0 (25)

For (25) to be reduced to an expression in the single independent invariant η, it is
necessary that the coefficients should be constants or functions of η alone. So we
consider the constant coefficients only.

ZβT β−1 = K1 (26)

T βG H = K2 (27)
1

q
T 2βq ′ = K3 (28)

Taking β = 0.5, K3 = −0.5 and on solving Eq. (28), we get

q = T −1/2 = 1√
T

Substituting the above values in Eq. (25), we get the final reduced form of ordinary
differential equation

2F ′′(η) + (2F + η)F ′(η) + F = 0 (29)

Under the similarity variable η, the boundary conditions (29) are transformed into:

F(0) = u0

H(T )
and F

(
1

T β

)
= uL

H(T )

Thus, the Eq. (29) takes the form

d

dη

(
d F

dη
+ 1

2
F2 + 1

2
ηF

)
= 0 which on integration gives

d F

dη
+ 1

2
F2 + 1

2
ηF = K1, where K1 is constant

i.e. F ′(η) = K1 − 1

2
ηF − 1

2
F2 (30)

Substitute, − 1
2 F(η)u + u′ = 0 and differentiating w.r.t ‘η’, we get

u′′(η) − gu′(η) + a f u(η) = 0 (31)
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Putting, g = − 1
2η, a = − 1

2 , f = K1

∴ u′′(η) + 1

2
ηu′(η) +

(
−1

2
K1

)
u = 0 (32)

Substituting, u(η) = v(z), where 2z = −aη2, we get the confluent hypergeometric
differential equation

zv′′(z) +
(

1

2
− z

)
v′ − 1

2
K1v = 0 (33)

It is also called the Kummer equation and the Pochhammer–Barnes equation and a solu-
tion of it is a confluent hypergeometric function, a Kummer function, or a Pochhammer
function.

The general solution of Eq. (33) is

v = c1v1 + c2v2

v1 = 1F 1(a, c; z)

v2 = Z1−c1F 1(1 + a − c, 2 − c; z) (34)

where 1F 1(a, c; z) = ∑∞
k=0 Ak Zk ; where Ak = a(a+1)...(a+k−1)

c(c+1)...(c+k−1)k! and

Z1−c1F 1(1 + a − c, 2 − c; z) =
∞∑

k=0

Bk Zk; where

Bk = (1 + a − c)(2 + a − c) . . . (a + k − c)

(2 − c) (3 − c) . . . (1 − c + k) k!

If a − c = 1
2 K1 − 1

2 = 1
2 (K1 − 1) = n (integer) where K1 = 2n + 1(K1 is odd),

then v1 becomes ez1F 1(−n, c;−z) and the series has become a polynomial. The other
solution is an infinite series.

Similarly, if a − 1 = n ⇒ 1
2 K1 − 1 = n ⇒ K1 = 2n + 1, the polynomial solution

is v2 = Z1−cez1F 1(−n, 2 − c;−z).

4 Conclusion

Thus using one parameter group theory of similarity analysis, this article presents
the analytical solution in terms of confluent hypergeometric functions of the non-
linear partial differential equation which is transformed into an ordinary differential
equation for one dimensional, unsteady surfactant flow through unsaturated porous
media. For the sake of assurance in the analysis, the present discussion assumes certain
specific relationships which are consistent and holds equally true to the present physical
hydrological problems. Future research directions should include the collection of
additional field and laboratory-scale data and expanded modeling efforts.
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